Nuprl Lemma : sum-nat-le-simple

[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  ∀x:ℕn. (f[x] ≤ Σ(f[x] x < n))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: all: x:A. B[x] guard: {T} uimplies: supposing a int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B
Lemmas referenced :  sum-nat-le sum_wf nat_wf int_seg_wf int_seg_properties nat_properties decidable__le le_wf full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf less_than'_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename natural_numberEquality lambdaFormation independent_isectElimination because_Cache productElimination dependent_functionElimination dependent_set_memberEquality functionExtensionality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    \mforall{}x:\mBbbN{}n.  (f[x]  \mleq{}  \mSigma{}(f[x]  |  x  <  n))



Date html generated: 2018_05_21-PM-00_28_24
Last ObjectModification: 2018_05_19-AM-06_59_49

Theory : int_2


Home Index