Nuprl Lemma : l_all_not

[T:Type]. ∀L:T List. ∀P:T ⟶ ℙ.  ((∀x∈L.¬P[x]) ⇐⇒ ¬(∃x∈L. P[x]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k squash: T rev_implies:  Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  list_wf not_wf all_wf sq_stable__le select_wf length_wf int_seg_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation independent_pairFormation thin sqequalHypSubstitution productElimination because_Cache hypothesis independent_functionElimination voidElimination lemma_by_obid isectElimination natural_numberEquality cumulativity hypothesisEquality lambdaEquality applyEquality setElimination rename independent_isectElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation functionEquality universeEquality dependent_functionElimination independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x\mmember{}L.\mneg{}P[x])  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(\mexists{}x\mmember{}L.  P[x]))



Date html generated: 2016_05_14-AM-06_40_31
Last ObjectModification: 2016_01_14-PM-08_20_36

Theory : list_0


Home Index