Nuprl Lemma : append_cancel

[A:Type]. ∀[as,bs,cs:A List].  bs cs ∈ (A List) supposing (as bs) (as cs) ∈ (A List)


Proof




Definitions occuring in Statement :  append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] guard: {T} and: P ∧ Q
Lemmas referenced :  list_induction uall_wf list_wf isect_wf equal_wf append_wf list_ind_nil_lemma list_ind_cons_lemma cons_wf reduce_tl_cons_lemma and_wf tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename universeEquality dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination productElimination independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[as,bs,cs:A  List].    bs  =  cs  supposing  (as  @  bs)  =  (as  @  cs)



Date html generated: 2017_04_17-AM-08_13_18
Last ObjectModification: 2017_02_27-PM-04_39_04

Theory : list_1


Home Index