Nuprl Lemma : biject-iff

[A,B:Type].  ∀f:A ⟶ B. (Bij(A;B;f) ⇐⇒ Inj(A;B;f) ∧ (∃g:B ⟶ A. ∀x:B. ((f (g x)) x ∈ B)))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inject: Inj(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T inject: Inj(A;B;f) prop: biject: Bij(A;B;f) rev_implies:  Q exists: x:A. B[x] surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf surject-inverse biject_wf squash_wf true_wf iff_weakening_equal inject_wf exists_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis extract_by_obid isectElimination cumulativity applyEquality functionExtensionality productElimination independent_functionElimination dependent_pairFormation imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productEquality functionEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  \mLeftarrow{}{}\mRightarrow{}  Inj(A;B;f)  \mwedge{}  (\mexists{}g:B  {}\mrightarrow{}  A.  \mforall{}x:B.  ((f  (g  x))  =  x)))



Date html generated: 2017_04_17-AM-07_46_32
Last ObjectModification: 2017_02_27-PM-04_17_44

Theory : list_1


Home Index