Nuprl Lemma : biject-iff
∀[A,B:Type].  ∀f:A ⟶ B. (Bij(A;B;f) 
⇐⇒ Inj(A;B;f) ∧ (∃g:B ⟶ A. ∀x:B. ((f (g x)) = x ∈ B)))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
inject: Inj(A;B;f)
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
surject-inverse, 
biject_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
inject_wf, 
exists_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productEquality, 
functionEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  \mLeftarrow{}{}\mRightarrow{}  Inj(A;B;f)  \mwedge{}  (\mexists{}g:B  {}\mrightarrow{}  A.  \mforall{}x:B.  ((f  (g  x))  =  x)))
Date html generated:
2017_04_17-AM-07_46_32
Last ObjectModification:
2017_02_27-PM-04_17_44
Theory : list_1
Home
Index