Nuprl Lemma : finite-subtype

[B:Type]. ∀P:B ⟶ 𝔹(finite-type(B)  finite-type({b:B| ↑P[b]} ))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_stable: SqStable(P) squash: T guard: {T}
Lemmas referenced :  set_wf decidable__assert sq_stable_from_decidable member_filter l_member_set2 filter_type bool_wf finite-type_wf assert_wf finite-type-iff-list l_member_wf all_wf list_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality addLevel impliesFunctionality independent_functionElimination setEquality applyEquality functionEquality cumulativity because_Cache setElimination rename dependent_set_memberEquality universeEquality dependent_pairFormation dependent_functionElimination independent_pairFormation introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[B:Type].  \mforall{}P:B  {}\mrightarrow{}  \mBbbB{}.  (finite-type(B)  {}\mRightarrow{}  finite-type(\{b:B|  \muparrow{}P[b]\}  ))



Date html generated: 2016_05_14-PM-01_52_58
Last ObjectModification: 2016_01_15-AM-08_14_53

Theory : list_1


Home Index