Nuprl Lemma : finite-subtype
∀[B:Type]. ∀P:B ⟶ 𝔹. (finite-type(B) ⇒ finite-type({b:B| ↑P[b]} ))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T), 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
guard: {T}
Lemmas referenced : 
set_wf, 
decidable__assert, 
sq_stable_from_decidable, 
member_filter, 
l_member_set2, 
filter_type, 
bool_wf, 
finite-type_wf, 
assert_wf, 
finite-type-iff-list, 
l_member_wf, 
all_wf, 
list_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
setEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberEquality, 
universeEquality, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[B:Type].  \mforall{}P:B  {}\mrightarrow{}  \mBbbB{}.  (finite-type(B)  {}\mRightarrow{}  finite-type(\{b:B|  \muparrow{}P[b]\}  ))
Date html generated:
2016_05_14-PM-01_52_58
Last ObjectModification:
2016_01_15-AM-08_14_53
Theory : list_1
Home
Index