Nuprl Lemma : insert-combine_wf
∀T:Type. ∀cmp:comparison(T). ∀f:T ⟶ T ⟶ T. ∀x:T. ∀L:T List.  (insert-combine(cmp;f;x;L) ∈ T List)
Proof
Definitions occuring in Statement : 
insert-combine: insert-combine(cmp;f;x;l)
, 
comparison: comparison(T)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
insert-combine: insert-combine(cmp;f;x;l)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
comparison: comparison(T)
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
list_wf, 
cons_wf, 
nil_wf, 
value-type-has-value, 
int-value-type, 
ifthenelse_wf, 
eq_int_wf, 
lt_int_wf, 
comparison_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
callbyvalueReduce, 
intEquality, 
independent_isectElimination, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
functionEquality, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}x:T.  \mforall{}L:T  List.    (insert-combine(cmp;f;x;L)  \mmember{}  T  List)
Date html generated:
2016_05_14-PM-02_40_45
Last ObjectModification:
2015_12_26-PM-02_43_54
Theory : list_1
Home
Index