Nuprl Lemma : insert-combine_wf

T:Type. ∀cmp:comparison(T). ∀f:T ⟶ T ⟶ T. ∀x:T. ∀L:T List.  (insert-combine(cmp;f;x;L) ∈ List)


Proof




Definitions occuring in Statement :  insert-combine: insert-combine(cmp;f;x;l) comparison: comparison(T) list: List all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T insert-combine: insert-combine(cmp;f;x;l) uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) has-value: (a)↓ uimplies: supposing a comparison: comparison(T) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf cons_wf nil_wf value-type-has-value int-value-type ifthenelse_wf eq_int_wf lt_int_wf comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality callbyvalueReduce intEquality independent_isectElimination applyEquality setElimination rename natural_numberEquality functionEquality dependent_functionElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}x:T.  \mforall{}L:T  List.    (insert-combine(cmp;f;x;L)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-02_40_45
Last ObjectModification: 2015_12_26-PM-02_43_54

Theory : list_1


Home Index