Nuprl Lemma : iseg_same_length
∀[T:Type]. ∀[L1,L2:T List].  (L1 = L2 ∈ (T List)) supposing ((||L1|| = ||L2|| ∈ ℤ) and L1 ≤ L2)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2, 
length: ||as||, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iseg: l1 ≤ l2, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
cons: [a / b], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top, 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A
Lemmas referenced : 
list-cases, 
product_subtype_list, 
equal_wf, 
length_wf, 
iseg_wf, 
list_wf, 
append-nil, 
subtype_rel_list, 
top_wf, 
length_wf_nat, 
nat_wf, 
length-append, 
length_of_cons_lemma, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
sqequalRule, 
intEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  =  L2)  supposing  ((||L1||  =  ||L2||)  and  L1  \mleq{}  L2)
Date html generated:
2016_10_21-AM-10_08_22
Last ObjectModification:
2016_07_12-AM-05_27_48
Theory : list_1
Home
Index