Nuprl Lemma : iseg_select2

[T:Type]. ∀[l1,l2:T List].  {∀[i:ℕ||l1||]. (l1[i] l2[i] ∈ T)} supposing l1 ≤ l2


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] guard: {T} natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q cand: c∧ B subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  iseg_wf int_seg_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt int_seg_properties false_wf length_wf int_seg_subtype_nat iseg_select
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_functionElimination hypothesis applyEquality natural_numberEquality independent_isectElimination independent_pairFormation lambdaFormation setElimination rename unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    \{\mforall{}[i:\mBbbN{}||l1||].  (l1[i]  =  l2[i])\}  supposing  l1  \mleq{}  l2



Date html generated: 2016_05_14-PM-01_34_28
Last ObjectModification: 2016_01_15-AM-08_26_00

Theory : list_1


Home Index