Nuprl Lemma : l_before_append_front
∀[T:Type]. ∀L1,L2:T List. ∀x,y:T. x before y ∈ L1 @ L2
⇒ x before y ∈ L1 supposing ¬(y ∈ L2)
Proof
Definitions occuring in Statement :
l_before: x before y ∈ l
,
l_member: (x ∈ l)
,
append: as @ bs
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
l_before: x before y ∈ l
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
top: Top
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
last: last(L)
,
select: L[n]
,
cons: [a / b]
,
subtract: n - m
,
length: ||as||
,
list_ind: list_ind,
nil: []
,
it: ⋅
Lemmas referenced :
l_member_wf,
sublist_append_front,
cons_wf,
nil_wf,
null_cons_lemma,
last_wf,
not_wf,
assert_wf,
null_wf,
sublist_wf,
append_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
voidElimination,
lemma_by_obid,
isectElimination,
hypothesis,
rename,
because_Cache,
independent_isectElimination,
isect_memberEquality,
voidEquality,
independent_functionElimination,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2:T List. \mforall{}x,y:T. x before y \mmember{} L1 @ L2 {}\mRightarrow{} x before y \mmember{} L1 supposing \mneg{}(y \mmember{} L2)
Date html generated:
2016_05_14-AM-07_44_54
Last ObjectModification:
2015_12_26-PM-02_53_05
Theory : list_1
Home
Index