Nuprl Lemma : permutation-subtype
∀[A,B:Type]. ∀[L1,L2:A List].  (permutation(A;L1;L2) 
⇒ (A ⊆r B) 
⇒ permutation(B;L1;L2))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
permutation: permutation(T;L1;L2)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_list, 
equal_functionality_wrt_subtype_rel2, 
list_wf, 
inject_wf, 
int_seg_wf, 
length_wf, 
equal_wf, 
permute_list_wf, 
subtype_rel_wf, 
permutation_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality, 
natural_numberEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L1,L2:A  List].    (permutation(A;L1;L2)  {}\mRightarrow{}  (A  \msubseteq{}r  B)  {}\mRightarrow{}  permutation(B;L1;L2))
Date html generated:
2017_04_17-AM-08_10_23
Last ObjectModification:
2017_02_27-PM-04_37_35
Theory : list_1
Home
Index