Nuprl Lemma : permutation-subtype

[A,B:Type]. ∀[L1,L2:A List].  (permutation(A;L1;L2)  (A ⊆B)  permutation(B;L1;L2))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q permutation: permutation(T;L1;L2) exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_list equal_functionality_wrt_subtype_rel2 list_wf inject_wf int_seg_wf length_wf equal_wf permute_list_wf subtype_rel_wf permutation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis independent_pairFormation introduction extract_by_obid isectElimination independent_isectElimination cumulativity equalityTransitivity equalitySymmetry independent_functionElimination productEquality natural_numberEquality because_Cache functionExtensionality applyEquality sqequalRule universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L1,L2:A  List].    (permutation(A;L1;L2)  {}\mRightarrow{}  (A  \msubseteq{}r  B)  {}\mRightarrow{}  permutation(B;L1;L2))



Date html generated: 2017_04_17-AM-08_10_23
Last ObjectModification: 2017_02_27-PM-04_37_35

Theory : list_1


Home Index