Nuprl Lemma : 2-is-sum-of-three-cubes
According to wikipedia, as of 2018 these are the only
known ways of writing 2 as the sum of three cubes .⋅
(∀x:ℤ
let a = 1 + (6 * x * x * x) in
let b = 1 - 6 * x * x * x in
let c = -(6 * x * x) in
((a * a * a) + (b * b * b) + (c * c * c)) = 2 ∈ ℤ)
∧ let a = 1214928 in
let b = 3480205 in
let c = -3528875 in
((a * a * a) + (b * b * b) + (c * c * c)) = 2 ∈ ℤ
Proof
Definitions occuring in Statement :
let: let,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
multiply: n * m
,
subtract: n - m
,
add: n + m
,
minus: -n
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
let: let,
and: P ∧ Q
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
,
subtract: n - m
Lemmas referenced :
mul-distributes-right,
istype-void,
mul-distributes,
mul-associates,
add-associates,
minus-one-mul,
mul-commutes,
mul-swap,
minus-one-mul-top,
add-swap,
add-commutes,
zero-mul,
zero-add,
add-zero,
istype-int
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
Error :lambdaFormation_alt,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
multiplyEquality,
addEquality,
natural_numberEquality,
hypothesisEquality,
Error :isect_memberEquality_alt,
voidElimination,
hypothesis,
minusEquality,
independent_pairFormation
Latex:
(\mforall{}x:\mBbbZ{}
let a = 1 + (6 * x * x * x) in
let b = 1 - 6 * x * x * x in
let c = -(6 * x * x) in
((a * a * a) + (b * b * b) + (c * c * c)) = 2)
\mwedge{} let a = 1214928 in
let b = 3480205 in
let c = -3528875 in
((a * a * a) + (b * b * b) + (c * c * c)) = 2
Date html generated:
2019_06_20-PM-02_43_00
Last ObjectModification:
2019_03_16-AM-11_04_23
Theory : num_thy_1
Home
Index