Nuprl Lemma : 2-is-sum-of-three-cubes

According to wikipedia, as of 2018 these are the only
known ways of writing as the sum of three cubes .⋅

(∀x:ℤ
   let (6 x) in
    let in
    let -(6 x) in
    ((a a) (b b) (c c)) 2 ∈ ℤ)
∧ let 1214928 in
   let 3480205 in
   let -3528875 in
   ((a a) (b b) (c c)) 2 ∈ ℤ


Proof




Definitions occuring in Statement :  let: let all: x:A. B[x] and: P ∧ Q multiply: m subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  let: let and: P ∧ Q cand: c∧ B all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T top: Top subtract: m
Lemmas referenced :  mul-distributes-right istype-void mul-distributes mul-associates add-associates minus-one-mul mul-commutes mul-swap minus-one-mul-top add-swap add-commutes zero-mul zero-add add-zero istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality addEquality natural_numberEquality hypothesisEquality Error :isect_memberEquality_alt,  voidElimination hypothesis minusEquality independent_pairFormation

Latex:
(\mforall{}x:\mBbbZ{}
      let  a  =  1  +  (6  *  x  *  x  *  x)  in
        let  b  =  1  -  6  *  x  *  x  *  x  in
        let  c  =  -(6  *  x  *  x)  in
        ((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  2)
\mwedge{}  let  a  =  1214928  in
      let  b  =  3480205  in
      let  c  =  -3528875  in
      ((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  2



Date html generated: 2019_06_20-PM-02_43_00
Last ObjectModification: 2019_03_16-AM-11_04_23

Theory : num_thy_1


Home Index