Nuprl Lemma : add-div-when-divides

a,b:ℤ. ∀c:ℤ-o.  (((a ÷ c) (b ÷ c)) ((a b) ÷ c) ∈ ℤsupposing ((c a) and (c b))


Proof




Definitions occuring in Statement :  divides: a int_nzero: -o uimplies: supposing a all: x:A. B[x] divide: n ÷ m add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T divides: a exists: x:A. B[x] uall: [x:A]. B[x] int_nzero: -o prop: true: True top: Top squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  divides_wf int_nzero_wf istype-int divide_wfa mul-distributes istype-void divide-exact equal_wf squash_wf true_wf istype-universe add_functionality_wrt_eq subtype_rel_self iff_weakening_equal div-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin hypothesis Error :universeIsType,  extract_by_obid isectElimination setElimination rename hypothesisEquality sqequalRule Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  intEquality multiplyEquality because_Cache natural_numberEquality equalityTransitivity equalitySymmetry voidElimination addEquality applyEquality Error :lambdaEquality_alt,  imageElimination instantiate universeEquality independent_isectElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c:\mBbbZ{}\msupminus{}\msupzero{}.    (((a  \mdiv{}  c)  +  (b  \mdiv{}  c))  =  ((a  +  b)  \mdiv{}  c))  supposing  ((c  |  a)  and  (c  |  b))



Date html generated: 2019_06_20-PM-02_20_36
Last ObjectModification: 2019_03_06-AM-10_54_07

Theory : num_thy_1


Home Index