Nuprl Lemma : add_is_int_counterexample
∀[n:ℤ]. ∀[x:ℤ_n].  (x + (-x) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
top: Top
Lemmas referenced : 
eqmod_wf, 
equal_wf, 
equal-wf-base, 
int_mod_wf, 
minus-one-mul, 
add-mul-special, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
intEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\mBbbZ{}\_n].    (x  +  (-x)  \mmember{}  \mBbbZ{})
Date html generated:
2017_04_17-AM-09_47_26
Last ObjectModification:
2017_02_27-PM-05_44_46
Theory : num_thy_1
Home
Index