Nuprl Lemma : add_is_int_counterexample

[n:ℤ]. ∀[x:ℤ_n].  (x (-x) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_mod: _n uall: [x:A]. B[x] member: t ∈ T add: m minus: -n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod: _n quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: top: Top
Lemmas referenced :  eqmod_wf equal_wf equal-wf-base int_mod_wf minus-one-mul add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality intEquality sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry lambdaFormation because_Cache rename extract_by_obid isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination productEquality axiomEquality isect_memberEquality voidElimination voidEquality natural_numberEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\mBbbZ{}\_n].    (x  +  (-x)  \mmember{}  \mBbbZ{})



Date html generated: 2017_04_17-AM-09_47_26
Last ObjectModification: 2017_02_27-PM-05_44_46

Theory : num_thy_1


Home Index