Nuprl Lemma : double_sum_functionality

[n,m:ℕ]. ∀[f,g:ℕn ⟶ ℕm ⟶ ℤ].
  sum(f[x;y] x < n; y < m) sum(g[x;y] x < n; y < m) ∈ ℤ supposing ∀x:ℕn. ∀y:ℕm.  (f[x;y] g[x;y] ∈ ℤ)


Proof




Definitions occuring in Statement :  double_sum: sum(f[x; y] x < n; y < m) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a double_sum: sum(f[x; y] x < n; y < m) so_lambda: λ2x.t[x] so_apply: x[s1;s2] nat: so_apply: x[s] all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  sum_functionality sum_wf int_seg_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality natural_numberEquality setElimination rename hypothesis because_Cache independent_isectElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality dependent_functionElimination imageMemberEquality baseClosed instantiate productElimination independent_functionElimination Error :functionIsType,  Error :universeIsType,  isect_memberEquality axiomEquality Error :inhabitedIsType

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].
    sum(f[x;y]  |  x  <  n;  y  <  m)  =  sum(g[x;y]  |  x  <  n;  y  <  m)  supposing  \mforall{}x:\mBbbN{}n.  \mforall{}y:\mBbbN{}m.    (f[x;y]  =  g[x;y])



Date html generated: 2019_06_20-PM-02_29_49
Last ObjectModification: 2018_09_26-PM-06_05_52

Theory : num_thy_1


Home Index