Nuprl Lemma : double_sum_functionality
∀[n,m:ℕ]. ∀[f,g:ℕn ⟶ ℕm ⟶ ℤ].
  sum(f[x;y] | x < n; y < m) = sum(g[x;y] | x < n; y < m) ∈ ℤ supposing ∀x:ℕn. ∀y:ℕm.  (f[x;y] = g[x;y] ∈ ℤ)
Proof
Definitions occuring in Statement : 
double_sum: sum(f[x; y] | x < n; y < m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
double_sum: sum(f[x; y] | x < n; y < m)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
sum_functionality, 
sum_wf, 
int_seg_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
axiomEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].
    sum(f[x;y]  |  x  <  n;  y  <  m)  =  sum(g[x;y]  |  x  <  n;  y  <  m)  supposing  \mforall{}x:\mBbbN{}n.  \mforall{}y:\mBbbN{}m.    (f[x;y]  =  g[x;y])
Date html generated:
2019_06_20-PM-02_29_49
Last ObjectModification:
2018_09_26-PM-06_05_52
Theory : num_thy_1
Home
Index