Nuprl Lemma : prime-isOdd
∀p:ℕ. (prime(p) 
⇒ (¬(p = 2 ∈ ℤ)) 
⇒ (↑isOdd(p)))
Proof
Definitions occuring in Statement : 
isOdd: isOdd(n)
, 
prime: prime(a)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nat: ℕ
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
divides: b | a
, 
true: True
, 
guard: {T}
, 
sq_type: SQType(T)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_wf, 
prime_wf, 
equal-wf-T-base, 
not_wf, 
isEven_wf, 
assert_wf, 
even-implies-two-times, 
odd-iff-not-even, 
divides-prime, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
intformle_wf, 
itermMultiply_wf, 
itermMinus_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
assoced_wf, 
equal-wf-base-T, 
equal-wf-base, 
or_wf, 
assoced_elim
Rules used in proof : 
baseClosed, 
intEquality, 
rename, 
setElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalitySymmetry, 
equalityTransitivity, 
natural_numberEquality, 
applyEquality, 
closedConclusion, 
baseApply, 
sqequalRule, 
dependent_pairFormation, 
cumulativity, 
instantiate, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
unionElimination, 
promote_hyp, 
minusEquality, 
orFunctionality, 
addLevel
Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mneg{}(p  =  2))  {}\mRightarrow{}  (\muparrow{}isOdd(p)))
Date html generated:
2018_05_21-PM-00_57_42
Last ObjectModification:
2017_12_31-PM-06_10_15
Theory : num_thy_1
Home
Index