Nuprl Lemma : prime-isOdd

p:ℕ(prime(p)  (p 2 ∈ ℤ))  (↑isOdd(p)))


Proof




Definitions occuring in Statement :  isOdd: isOdd(n) prime: prime(a) nat: assert: b all: x:A. B[x] not: ¬A implies:  Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  nat: prop: exists: x:A. B[x] not: ¬A uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] subtype_rel: A ⊆B divides: a true: True guard: {T} sq_type: SQType(T) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  or: P ∨ Q iff: ⇐⇒ Q
Lemmas referenced :  nat_wf prime_wf equal-wf-T-base not_wf isEven_wf assert_wf even-implies-two-times odd-iff-not-even divides-prime int_subtype_base subtype_base_sq int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_minus_lemma intformle_wf itermMultiply_wf itermMinus_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformeq_wf intformand_wf full-omega-unsat nat_properties assoced_wf equal-wf-base-T equal-wf-base or_wf assoced_elim
Rules used in proof :  baseClosed intEquality rename setElimination hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination independent_isectElimination productElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalitySymmetry equalityTransitivity natural_numberEquality applyEquality closedConclusion baseApply sqequalRule dependent_pairFormation cumulativity instantiate independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality approximateComputation unionElimination promote_hyp minusEquality orFunctionality addLevel

Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mneg{}(p  =  2))  {}\mRightarrow{}  (\muparrow{}isOdd(p)))



Date html generated: 2018_05_21-PM-00_57_42
Last ObjectModification: 2017_12_31-PM-06_10_15

Theory : num_thy_1


Home Index