Nuprl Lemma : imonomial-term-add

vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ ℤ.  ((int_term_value(f;imonomial-term(<a, vs>)) int_term_value(f;imonomial-term(<b, vs>)\000C)) int_term_value(f;imonomial-term(<b, vs>)) ∈ ℤ)


Proof




Definitions occuring in Statement :  imonomial-term: imonomial-term(m) int_term_value: int_term_value(f;t) list: List int_nzero: -o all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_nzero: -o true: True subtype_rel: A ⊆B top: Top squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  int_nzero_wf list_wf int_term_value_wf imonomial-term_wf mul-distributes-right equal_wf squash_wf true_wf add_functionality_wrt_eq imonomial-term-linear iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis functionEquality intEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionExtensionality applyEquality hypothesisEquality independent_pairEquality setElimination rename multiplyEquality because_Cache natural_numberEquality addEquality sqequalRule lambdaEquality isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality independent_isectElimination dependent_functionElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.
    ((int\_term\_value(f;imonomial-term(<a,  vs>))  +  int\_term\_value(f;imonomial-term(<b,  vs>)))  =  int\_ter\000Cm\_value(f;imonomial-term(<a  +  b,  vs>)))



Date html generated: 2017_04_14-AM-08_57_56
Last ObjectModification: 2017_02_27-PM-03_41_04

Theory : omega


Home Index