Nuprl Lemma : imonomial-term-add
∀vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ ℤ.  ((int_term_value(f;imonomial-term(<a, vs>)) + int_term_value(f;imonomial-term(<b, vs>)\000C)) = int_term_value(f;imonomial-term(<a + b, vs>)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imonomial-term: imonomial-term(m)
, 
int_term_value: int_term_value(f;t)
, 
list: T List
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
true: True
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
int_nzero_wf, 
list_wf, 
int_term_value_wf, 
imonomial-term_wf, 
mul-distributes-right, 
equal_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
imonomial-term-linear, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
functionEquality, 
intEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
setElimination, 
rename, 
multiplyEquality, 
because_Cache, 
natural_numberEquality, 
addEquality, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.
    ((int\_term\_value(f;imonomial-term(<a,  vs>))  +  int\_term\_value(f;imonomial-term(<b,  vs>)))  =  int\_ter\000Cm\_value(f;imonomial-term(<a  +  b,  vs>)))
Date html generated:
2017_04_14-AM-08_57_56
Last ObjectModification:
2017_02_27-PM-03_41_04
Theory : omega
Home
Index