Nuprl Lemma : per-union-elim1
∀[A,B:Type].  ∀x:per-union(A;B). per-or(x ~ inl outl(x);x ~ inr outr(x) )
Proof
Definitions occuring in Statement : 
per-union: per-union(A;B)
, 
per-or: per-or(A;B)
, 
outr: outr(x)
, 
outl: outl(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
inr: inr x 
, 
inl: inl x
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
per-union: per-union(A;B)
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
outl: outl(x)
, 
outr: outr(x)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
top: Top
, 
guard: {T}
, 
squash: ↓T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
true: True
, 
false: False
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
member-per-or-left, 
uand_wf, 
sqle_wf_base, 
istype-universe, 
istype-top, 
istype-void, 
if-per-void, 
per-void_wf, 
member-per-or-right, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
per-or-equal, 
subtype_base_sq, 
int_subtype_base, 
per-union_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
introduction, 
pointwiseFunctionality, 
sqequalHypSubstitution, 
sqequalRule, 
pertypeElimination, 
cut, 
isectElimination, 
thin, 
baseClosed, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
extract_by_obid, 
hypothesis, 
because_Cache, 
promote_hyp, 
isinlCases, 
hypothesisEquality, 
independent_isectElimination, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
axiomSqEquality, 
Error :isectIsType, 
Error :universeIsType, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
voidElimination, 
rename, 
isaxiomCases, 
independent_functionElimination, 
isinrCases, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
universeEquality, 
independent_pairFormation, 
sqequalElimination, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
imageMemberEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}x:per-union(A;B).  per-or(x  \msim{}  inl  outl(x);x  \msim{}  inr  outr(x)  )
Date html generated:
2019_06_20-AM-11_30_47
Last ObjectModification:
2018_10_06-AM-10_00_54
Theory : per!type
Home
Index