Nuprl Lemma : quotient-top-union-top-not-subtype

¬(⇃(Top Top) ⊆(Top Top))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] subtype_rel: A ⊆B top: Top not: ¬A true: True union: left right
Definitions unfolded in proof :  not: ¬A implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] top: Top true: True subtype_rel: A ⊆B prop: sq_type: SQType(T) guard: {T} false: False
Lemmas referenced :  quotient-member-eq top_wf true_wf equiv_rel_true subtype_rel_wf quotient_wf equal_wf subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesis sqequalRule lambdaEquality independent_isectElimination dependent_functionElimination inlEquality isect_memberEquality voidElimination voidEquality inrEquality independent_functionElimination natural_numberEquality applyEquality because_Cache applyLambdaEquality hypothesisEquality equalityTransitivity equalitySymmetry unionElimination instantiate cumulativity intEquality promote_hyp

Latex:
\mneg{}(\00D9(Top  +  Top)  \msubseteq{}r  (Top  +  Top))



Date html generated: 2019_06_20-PM-00_33_04
Last ObjectModification: 2018_08_21-PM-01_53_14

Theory : quot_1


Home Index