Nuprl Lemma : quotient-top-union-top-not-subtype
¬(⇃(Top + Top) ⊆r (Top + Top))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
not: ¬A
, 
true: True
, 
union: left + right
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
true: True
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
Lemmas referenced : 
quotient-member-eq, 
top_wf, 
true_wf, 
equiv_rel_true, 
subtype_rel_wf, 
quotient_wf, 
equal_wf, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
inlEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inrEquality, 
independent_functionElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
applyLambdaEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
promote_hyp
Latex:
\mneg{}(\00D9(Top  +  Top)  \msubseteq{}r  (Top  +  Top))
Date html generated:
2019_06_20-PM-00_33_04
Last ObjectModification:
2018_08_21-PM-01_53_14
Theory : quot_1
Home
Index