Nuprl Lemma : rel_plus_functionality_wrt_iff
∀[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R x y 
⇐⇒ Q x y)) 
⇒ (∀x,y:T.  (R+ x y 
⇐⇒ Q+ x y)))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rel_exp_wf, 
exists_wf, 
nat_plus_wf, 
nat_plus_subtype_nat, 
all_wf, 
iff_wf, 
rel_exp_functionality_wrt_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
applyEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x,y:T.    (R  x  y  \mLeftarrow{}{}\mRightarrow{}  Q  x  y))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R\msupplus{}  x  y  \mLeftarrow{}{}\mRightarrow{}  Q\msupplus{}  x  y)))
Date html generated:
2016_05_14-PM-03_55_25
Last ObjectModification:
2015_12_26-PM-06_55_23
Theory : relations2
Home
Index