Nuprl Lemma : rel_plus_functionality_wrt_iff

[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R ⇐⇒ y))  (∀x,y:T.  (R+ ⇐⇒ Q+ y)))


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_plus: R+ uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T prop: infix_ap: y subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  rel_exp_wf exists_wf nat_plus_wf nat_plus_subtype_nat all_wf iff_wf rel_exp_functionality_wrt_iff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality applyEquality cut lemma_by_obid isectElimination because_Cache hypothesis lambdaEquality functionEquality cumulativity universeEquality independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x,y:T.    (R  x  y  \mLeftarrow{}{}\mRightarrow{}  Q  x  y))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R\msupplus{}  x  y  \mLeftarrow{}{}\mRightarrow{}  Q\msupplus{}  x  y)))



Date html generated: 2016_05_14-PM-03_55_25
Last ObjectModification: 2015_12_26-PM-06_55_23

Theory : relations2


Home Index