Nuprl Lemma : Spread-family-ext

[P,Pos:Type]. ∀[f:Pos ⟶ ℤ]. ∀[Mv:ℤ ⟶ P ⟶ P ⟶ Type].
  Spread-family(P;Pos;f;n,p,q.Mv[n;p;q])
  ≡ λp.(a:Pos × (q:P ⟶ Mv[f a;p;q] ⟶ (Spread-family(P;Pos;f;n,p,q.Mv[n;p;q]) q)))


Proof




Definitions occuring in Statement :  Spread-family: Spread-family(P;Pos;f;n,p,q.Mv[n; p; q]) ext-family: F ≡ G uall: [x:A]. B[x] so_apply: x[s1;s2;s3] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Spread-family: Spread-family(P;Pos;f;n,p,q.Mv[n; p; q]) so_apply: x[s1;s2;s3] uimplies: supposing a and: P ∧ Q cand: c∧ B ext-family: F ≡ G all: x:A. B[x] ext-eq: A ≡ B subtype_rel: A ⊆B type-family-continuous: type-family-continuous{i:l}(P;H) sub-family: F ⊆ G isect-family: a:A. F[a] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top pi1: fst(t) pi2: snd(t) family-monotone: family-monotone{i:l}(P;H) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec-family-ext nat_wf false_wf le_wf pair-eta equal_wf subtype_rel_self subtype_rel_wf subtype_rel_product subtype_rel_dep_function sub-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality productEquality cumulativity functionEquality applyEquality functionExtensionality intEquality universeEquality independent_isectElimination independent_pairFormation hypothesis sqequalRule dependent_functionElimination productElimination independent_pairEquality axiomEquality isect_memberEquality because_Cache lambdaFormation isectEquality dependent_set_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry voidElimination voidEquality independent_functionElimination dependent_pairEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[P,Pos:Type].  \mforall{}[f:Pos  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[Mv:\mBbbZ{}  {}\mrightarrow{}  P  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    Spread-family(P;Pos;f;n,p,q.Mv[n;p;q])  \mequiv{}  \mlambda{}p.(a:Pos  \mtimes{}  (q:P
                                                                                                              {}\mrightarrow{}  Mv[f  a;p;q]
                                                                                                              {}\mrightarrow{}  (Spread-family(P;Pos;f;n,p,q.Mv[n;p;q]) 
                                                                                                                      q)))



Date html generated: 2017_04_17-AM-09_29_00
Last ObjectModification: 2017_02_27-PM-05_28_54

Theory : spread


Home Index