Nuprl Lemma : append-tuple-shorten-tuple

[L:Type List]. ∀[x:tuple-type(L)]. ∀[n:ℕ||L||].
  (append-tuple(n;||L|| n;fst(split-tuple(x;n));shorten-tuple(x;n)) x)


Proof




Definitions occuring in Statement :  append-tuple: append-tuple(n;m;x;y) shorten-tuple: shorten-tuple(x;n) split-tuple: split-tuple(x;n) tuple-type: tuple-type(L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] pi1: fst(t) subtract: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top
Lemmas referenced :  append-tuple-split-tuple int_seg_wf length_wf tuple-type_wf list_wf shorten-tuple-split-tuple int_seg_subtype_nat false_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule natural_numberEquality instantiate universeEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[L:Type  List].  \mforall{}[x:tuple-type(L)].  \mforall{}[n:\mBbbN{}||L||].
    (append-tuple(n;||L||  -  n;fst(split-tuple(x;n));shorten-tuple(x;n))  \msim{}  x)



Date html generated: 2016_05_14-PM-03_59_02
Last ObjectModification: 2015_12_26-PM-07_21_37

Theory : tuples


Home Index