Nuprl Lemma : shorten-tuple-split-tuple

[n:ℕ]. ∀[x:Top].  (shorten-tuple(x;n) snd(split-tuple(x;n)))


Proof




Definitions occuring in Statement :  shorten-tuple: shorten-tuple(x;n) split-tuple: split-tuple(x;n) nat: uall: [x:A]. B[x] top: Top pi2: snd(t) sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: shorten-tuple: shorten-tuple(x;n) split-tuple: split-tuple(x;n) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff subtract: m eq_int: (i =z j) btrue: tt pi2: snd(t) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: subtype_rel: A ⊆B uiff: uiff(P;Q) guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf le_wf eqtt_to_assert assert_of_le_int lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity not_wf iff_weakening_uiff assert_of_bnot equal_wf nat_wf subtype_base_sq lifting-strict-spread strict4-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination equalityElimination because_Cache baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry productElimination impliesFunctionality instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:Top].    (shorten-tuple(x;n)  \msim{}  snd(split-tuple(x;n)))



Date html generated: 2017_04_17-AM-09_29_58
Last ObjectModification: 2017_02_27-PM-05_30_34

Theory : tuples


Home Index