Nuprl Lemma : append-tuple-split-tuple
∀[L:Type List]. ∀[x:tuple-type(L)]. ∀[n:ℕ||L||].
(append-tuple(n;||L|| - n;fst(split-tuple(x;n));snd(split-tuple(x;n))) ~ x)
Proof
Definitions occuring in Statement :
append-tuple: append-tuple(n;m;x;y)
,
split-tuple: split-tuple(x;n)
,
tuple-type: tuple-type(L)
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
pi1: fst(t)
,
pi2: snd(t)
,
subtract: n - m
,
natural_number: $n
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
append-tuple: append-tuple(n;m;x;y)
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
split-tuple: split-tuple(x;n)
,
pi2: snd(t)
,
nequal: a ≠ b ∈ T
,
pi1: fst(t)
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
int_seg_wf,
length_wf,
tuple-type_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list_wf,
list-cases,
tupletype_nil_lemma,
length_of_nil_lemma,
int_seg_properties,
unit_wf2,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
equal_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
tupletype_cons_lemma,
length_of_cons_lemma,
ifthenelse_wf,
null_wf,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
eq_int_wf,
assert_of_eq_int,
neg_assert_of_eq_int,
nequal-le-implies,
equal-wf-base-T,
null_nil_lemma,
null_cons_lemma,
add-is-int-iff,
false_wf,
decidable__lt,
lelt_wf,
cons_wf,
split-tuple_wf,
firstn_wf,
nth_tl_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
instantiate,
universeEquality,
applyEquality,
because_Cache,
unionElimination,
productElimination,
promote_hyp,
hypothesis_subsumption,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
baseClosed,
cumulativity,
imageElimination,
productEquality,
equalityElimination,
pointwiseFunctionality,
baseApply,
closedConclusion
Latex:
\mforall{}[L:Type List]. \mforall{}[x:tuple-type(L)]. \mforall{}[n:\mBbbN{}||L||].
(append-tuple(n;||L|| - n;fst(split-tuple(x;n));snd(split-tuple(x;n))) \msim{} x)
Date html generated:
2017_04_17-AM-09_30_11
Last ObjectModification:
2017_02_27-PM-05_31_16
Theory : tuples
Home
Index