Nuprl Lemma : append-tuple-split-tuple

[L:Type List]. ∀[x:tuple-type(L)]. ∀[n:ℕ||L||].
  (append-tuple(n;||L|| n;fst(split-tuple(x;n));snd(split-tuple(x;n))) x)


Proof




Definitions occuring in Statement :  append-tuple: append-tuple(n;m;x;y) split-tuple: split-tuple(x;n) tuple-type: tuple-type(L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) subtract: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) append-tuple: append-tuple(n;m;x;y) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b split-tuple: split-tuple(x;n) pi2: snd(t) nequal: a ≠ b ∈  pi1: fst(t)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf length_wf tuple-type_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases tupletype_nil_lemma length_of_nil_lemma int_seg_properties unit_wf2 product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int tupletype_cons_lemma length_of_cons_lemma ifthenelse_wf null_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int neg_assert_of_eq_int nequal-le-implies equal-wf-base-T null_nil_lemma null_cons_lemma add-is-int-iff false_wf decidable__lt lelt_wf cons_wf split-tuple_wf firstn_wf nth_tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom instantiate universeEquality applyEquality because_Cache unionElimination productElimination promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed cumulativity imageElimination productEquality equalityElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[L:Type  List].  \mforall{}[x:tuple-type(L)].  \mforall{}[n:\mBbbN{}||L||].
    (append-tuple(n;||L||  -  n;fst(split-tuple(x;n));snd(split-tuple(x;n)))  \msim{}  x)



Date html generated: 2017_04_17-AM-09_30_11
Last ObjectModification: 2017_02_27-PM-05_31_16

Theory : tuples


Home Index