Nuprl Lemma : split-tuple_wf

[L:Type List]. ∀[x:tuple-type(L)]. ∀[n:ℕ||L||].  (split-tuple(x;n) ∈ tuple-type(firstn(n;L)) × tuple-type(nth_tl(n;L)))


Proof




Definitions occuring in Statement :  split-tuple: split-tuple(x;n) tuple-type: tuple-type(L) firstn: firstn(n;as) length: ||as|| nth_tl: nth_tl(n;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B split-tuple: split-tuple(x;n) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb bfalse: ff assert: b nequal: a ≠ b ∈  pi1: fst(t) pi2: snd(t) null: null(as) list_ind: list_ind tuple-type: tuple-type(L) subtract: m tl: tl(l) rev_implies:  Q iff: ⇐⇒ Q int_iseg: {i...j} cand: c∧ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases length_of_nil_lemma tupletype_nil_lemma list_ind_nil_lemma nth_tl_nil int_seg_properties int_seg_wf length_wf nil_wf tuple-type_wf product_subtype_list colength-cons-not-zero istype-nat colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf length_of_cons_lemma tupletype_cons_lemma eq_int_wf eqtt_to_assert assert_of_eq_int first0 cons_wf subtype_rel_list top_wf it_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int null_cons_lemma subtype_rel_self decidable__lt add-is-int-iff false_wf reduce_tl_cons_lemma le_int_wf assert_of_le_int iff_weakening_uiff assert_wf list_ind_cons_lemma lt_int_wf assert_of_lt_int null_wf firstn_wf assert_of_null length_firstn equal-wf-T-base less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  universeEquality instantiate unionElimination productElimination voidEquality promote_hyp hypothesis_subsumption Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  because_Cache applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase equalityElimination cumulativity independent_pairEquality addEquality isect_memberEquality pointwiseFunctionality Error :productIsType

Latex:
\mforall{}[L:Type  List].  \mforall{}[x:tuple-type(L)].  \mforall{}[n:\mBbbN{}||L||].
    (split-tuple(x;n)  \mmember{}  tuple-type(firstn(n;L))  \mtimes{}  tuple-type(nth\_tl(n;L)))



Date html generated: 2019_06_20-PM-02_03_31
Last ObjectModification: 2018_12_30-PM-10_15_01

Theory : tuples


Home Index