Nuprl Lemma : shorten-tuple-append-tuple

[L1,L2:Type List].
  ∀[x:tuple-type(L1)]. ∀[y:tuple-type(L2)].
    (shorten-tuple(append-tuple(||L1||;||L2||;x;y);||L1||) y ∈ tuple-type(L2)) 
  supposing 0 < ||L2||


Proof




Definitions occuring in Statement :  append-tuple: append-tuple(n;m;x;y) shorten-tuple: shorten-tuple(x;n) tuple-type: tuple-type(L) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top pi2: snd(t) prop:
Lemmas referenced :  shorten-tuple-split-tuple length_wf_nat split-tuple-append-tuple tuple-type_wf less_than_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin instantiate universeEquality hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality independent_isectElimination axiomEquality because_Cache natural_numberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L1,L2:Type  List].
    \mforall{}[x:tuple-type(L1)].  \mforall{}[y:tuple-type(L2)].
        (shorten-tuple(append-tuple(||L1||;||L2||;x;y);||L1||)  =  y) 
    supposing  0  <  ||L2||



Date html generated: 2016_05_14-PM-03_59_14
Last ObjectModification: 2015_12_26-PM-07_21_42

Theory : tuples


Home Index