Nuprl Lemma : shorten-tuple-append-tuple
∀[L1,L2:Type List].
  ∀[x:tuple-type(L1)]. ∀[y:tuple-type(L2)].
    (shorten-tuple(append-tuple(||L1||;||L2||;x;y);||L1||) = y ∈ tuple-type(L2)) 
  supposing 0 < ||L2||
Proof
Definitions occuring in Statement : 
append-tuple: append-tuple(n;m;x;y)
, 
shorten-tuple: shorten-tuple(x;n)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
pi2: snd(t)
, 
prop: ℙ
Lemmas referenced : 
shorten-tuple-split-tuple, 
length_wf_nat, 
split-tuple-append-tuple, 
tuple-type_wf, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
universeEquality, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
axiomEquality, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L1,L2:Type  List].
    \mforall{}[x:tuple-type(L1)].  \mforall{}[y:tuple-type(L2)].
        (shorten-tuple(append-tuple(||L1||;||L2||;x;y);||L1||)  =  y) 
    supposing  0  <  ||L2||
Date html generated:
2016_05_14-PM-03_59_14
Last ObjectModification:
2015_12_26-PM-07_21_42
Theory : tuples
Home
Index