Nuprl Lemma : split-tuple-append-tuple
∀[L1,L2:Type List].
  ∀[x:tuple-type(L1)]. ∀[y:tuple-type(L2)].  (split-tuple(append-tuple(||L1||;||L2||;x;y);||L1||) ~ <x, y>) supposing 0 \000C< ||L2||
Proof
Definitions occuring in Statement : 
append-tuple: append-tuple(n;m;x;y)
, 
split-tuple: split-tuple(x;n)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
split-tuple: split-tuple(x;n)
, 
eq_int: (i =z j)
, 
append-tuple: append-tuple(n;m;x;y)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtract: n - m
, 
btrue: tt
, 
sq_type: SQType(T)
, 
guard: {T}
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nil: []
, 
it: ⋅
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
length: ||as||
, 
list_ind: list_ind
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
tuple-type_wf, 
length_wf, 
nat_wf, 
colength_wf_list, 
int_subtype_base, 
list_wf, 
list-cases, 
tupletype_nil_lemma, 
length_of_nil_lemma, 
subtype_base_sq, 
unit_wf2, 
unit_subtype_base, 
equal-unit, 
it_wf, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
set_subtype_base, 
le_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
tupletype_cons_lemma, 
length_of_cons_lemma, 
ifthenelse_wf, 
null_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_int_wf, 
assert_of_le_int, 
eqff_to_assert, 
non_neg_length, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel-equal, 
assert_of_null, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
nequal-le-implies, 
add-is-int-iff, 
false_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
length_wf_nat, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :equalityIsType3, 
applyEquality, 
unionElimination, 
cumulativity, 
because_Cache, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
Error :equalityIsType1, 
imageElimination, 
Error :dependent_set_memberEquality_alt, 
productEquality, 
addEquality, 
equalityElimination, 
pointwiseFunctionality, 
hyp_replacement
Latex:
\mforall{}[L1,L2:Type  List].
    \mforall{}[x:tuple-type(L1)].  \mforall{}[y:tuple-type(L2)].
        (split-tuple(append-tuple(||L1||;||L2||;x;y);||L1||)  \msim{}  <x,  y>) 
    supposing  0  <  ||L2||
Date html generated:
2019_06_20-PM-02_03_40
Last ObjectModification:
2018_09_30-PM-02_47_08
Theory : tuples
Home
Index