Nuprl Lemma : bag-append-is-single-iff

[T:Type]. ∀[x:T].
  ∀as,bs:bag(T).
    uiff((as bs) {x} ∈ bag(T);↓((as {x} ∈ bag(T)) ∧ (bs {} ∈ bag(T)))
                                   ∨ ((bs {x} ∈ bag(T)) ∧ (as {} ∈ bag(T))))


Proof




Definitions occuring in Statement :  bag-append: as bs single-bag: {x} empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] squash: T or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: or: P ∨ Q subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf bag_wf bag-append_wf single-bag_wf squash_wf or_wf equal-wf-T-base bag-append-is-single bag-append-empty bag-subtype-list true_wf bag-append-comm iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity dependent_functionElimination productEquality lambdaEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality because_Cache universeEquality independent_isectElimination unionElimination equalityElimination applyEquality hyp_replacement applyLambdaEquality natural_numberEquality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}as,bs:bag(T).    uiff((as  +  bs)  =  \{x\};\mdownarrow{}((as  =  \{x\})  \mwedge{}  (bs  =  \{\}))  \mvee{}  ((bs  =  \{x\})  \mwedge{}  (as  =  \{\})))



Date html generated: 2017_10_01-AM-08_46_51
Last ObjectModification: 2017_07_26-PM-04_31_32

Theory : bags


Home Index