Nuprl Lemma : bag-append-is-single-iff
∀[T:Type]. ∀[x:T].
  ∀as,bs:bag(T).
    uiff((as + bs) = {x} ∈ bag(T);↓((as = {x} ∈ bag(T)) ∧ (bs = {} ∈ bag(T)))
                                   ∨ ((bs = {x} ∈ bag(T)) ∧ (as = {} ∈ bag(T))))
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
single-bag: {x}
, 
empty-bag: {}
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
bag_wf, 
bag-append_wf, 
single-bag_wf, 
squash_wf, 
or_wf, 
equal-wf-T-base, 
bag-append-is-single, 
bag-append-empty, 
bag-subtype-list, 
true_wf, 
bag-append-comm, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
dependent_functionElimination, 
productEquality, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
applyEquality, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}as,bs:bag(T).    uiff((as  +  bs)  =  \{x\};\mdownarrow{}((as  =  \{x\})  \mwedge{}  (bs  =  \{\}))  \mvee{}  ((bs  =  \{x\})  \mwedge{}  (as  =  \{\})))
Date html generated:
2017_10_01-AM-08_46_51
Last ObjectModification:
2017_07_26-PM-04_31_32
Theory : bags
Home
Index