Nuprl Lemma : bag-append-is-single-iff2

[T:Type]. ∀[x:T].
  ∀as,bs:bag(T).
    uiff({x} (as bs) ∈ bag(T);↓((as {x} ∈ bag(T)) ∧ (bs {} ∈ bag(T)))
                                   ∨ ((bs {x} ∈ bag(T)) ∧ (as {} ∈ bag(T))))


Proof




Definitions occuring in Statement :  bag-append: as bs single-bag: {x} empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] squash: T or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) squash: T prop: or: P ∨ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q top: Top
Lemmas referenced :  bag-append-is-single-iff equal_wf bag_wf single-bag_wf bag-append_wf squash_wf or_wf equal-wf-T-base true_wf iff_weakening_equal bag-append-ident empty_bag_append_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_functionElimination hypothesis productElimination independent_isectElimination equalitySymmetry imageElimination sqequalRule imageMemberEquality baseClosed cumulativity productEquality lambdaEquality independent_pairEquality isect_memberEquality equalityTransitivity axiomEquality universeEquality unionElimination applyEquality natural_numberEquality independent_functionElimination hyp_replacement applyLambdaEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}as,bs:bag(T).    uiff(\{x\}  =  (as  +  bs);\mdownarrow{}((as  =  \{x\})  \mwedge{}  (bs  =  \{\}))  \mvee{}  ((bs  =  \{x\})  \mwedge{}  (as  =  \{\})))



Date html generated: 2017_10_01-AM-08_46_54
Last ObjectModification: 2017_07_26-PM-04_31_33

Theory : bags


Home Index