Nuprl Lemma : bag-from-member-function

[T:Type]
  ∀bs:bag(T). ∀P,Q:T ⟶ ℙ.
    ((∀i:T. Dec(Q[i]))
     (∀i:T. (i ↓∈ bs  Q[i]  P[i]))
     (∃b:bag(T). ((∀i:T. (i ↓∈ bs  Q[i]  i ↓∈ b)) ∧ (∀i:T. (i ↓∈  P[i])))))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q decision: Decision so_apply: x[s] prop: uimplies: supposing a top: Top and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T} iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs squash: T
Lemmas referenced :  bag_wf decidable_wf all_wf and_wf bag-member_wf dec2bool_decidable bag-member-filter assert_wf subtype_rel_bag top_wf not_wf subtype_rel_union dec2bool_wf bag-filter_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename dependent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis universeEquality because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality setEquality setElimination introduction productElimination independent_pairFormation dependent_functionElimination independent_functionElimination imageElimination imageMemberEquality baseClosed functionEquality

Latex:
\mforall{}[T:Type]
    \mforall{}bs:bag(T).  \mforall{}P,Q:T  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}i:T.  Dec(Q[i]))
        {}\mRightarrow{}  (\mforall{}i:T.  (i  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  Q[i]  {}\mRightarrow{}  P[i]))
        {}\mRightarrow{}  (\mexists{}b:bag(T).  ((\mforall{}i:T.  (i  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  Q[i]  {}\mRightarrow{}  i  \mdownarrow{}\mmember{}  b))  \mwedge{}  (\mforall{}i:T.  (i  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  P[i])))))



Date html generated: 2016_05_15-PM-02_58_51
Last ObjectModification: 2016_01_16-AM-08_37_36

Theory : bags


Home Index