Nuprl Lemma : bag-maximal?-cons

[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x,v:T].  uiff(↑bag-maximal?(v.b;x;R);(↑bag-maximal?(b;x;R)) ∧ (↑(R v)))


Proof




Definitions occuring in Statement :  bag-maximal?: bag-maximal?(bg;x;R) cons-bag: x.b bag: bag(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  single-bag: {x} bag-append: as bs cons-bag: x.b append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a uall: [x:A]. B[x] implies:  Q prop: rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma bag-maximal?-single assert_witness bag-maximal?_wf single-bag_wf and_wf assert_wf iff_weakening_uiff bag-append_wf bag-maximal?-append uiff_wf cons-bag_wf bool_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation isect_memberFormation introduction productElimination isectElimination hypothesisEquality independent_isectElimination independent_pairEquality independent_functionElimination applyEquality because_Cache addLevel cumulativity functionEquality universeEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,v:T].
    uiff(\muparrow{}bag-maximal?(v.b;x;R);(\muparrow{}bag-maximal?(b;x;R))  \mwedge{}  (\muparrow{}(R  x  v)))



Date html generated: 2016_05_15-PM-02_30_36
Last ObjectModification: 2015_12_27-AM-09_48_48

Theory : bags


Home Index