Nuprl Lemma : bag-maximal?-append
∀[T:Type]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[b1,b2:bag(T)]. ∀[x:T].
  uiff(↑bag-maximal?(b1 + b2;x;R);(↑bag-maximal?(b1;x;R)) ∧ (↑bag-maximal?(b2;x;R)))
Proof
Definitions occuring in Statement : 
bag-maximal?: bag-maximal?(bg;x;R), 
bag-append: as + bs, 
bag: bag(T), 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
bag-maximal?: bag-maximal?(bg;x;R), 
bag-append: as + bs, 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
true: True, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
bfalse: ff, 
not: ¬A, 
false: False, 
so_apply: x[s], 
band: p ∧b q, 
squash: ↓T, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x]
Lemmas referenced : 
assert_wf, 
bag-maximal?_wf, 
bag-append_wf, 
squash_wf, 
list-subtype-bag, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
decidable__assert, 
list_accum_wf, 
bool_wf, 
btrue_wf, 
band_wf, 
iff_imp_equal_bool, 
true_wf, 
subtype_base_sq, 
bool_subtype_base, 
assert_functionality_wrt_uiff, 
assert_witness, 
bfalse_wf, 
false_wf, 
list_accum_invariant, 
not_wf, 
assert_elim, 
not_assert_elim, 
and_wf, 
equal_wf, 
btrue_neq_bfalse, 
uiff_wf, 
bag_wf, 
bag_to_squash_list, 
sq_stable__uiff, 
sq_stable_from_decidable, 
sq_stable__and
Rules used in proof : 
because_Cache, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
functionExtensionality, 
applyEquality, 
productEquality, 
isect_memberEquality, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isect_memberFormation, 
productElimination, 
independent_pairEquality, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
universeEquality, 
imageElimination, 
promote_hyp, 
hyp_replacement, 
Error :applyLambdaEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b1,b2:bag(T)].  \mforall{}[x:T].
    uiff(\muparrow{}bag-maximal?(b1  +  b2;x;R);(\muparrow{}bag-maximal?(b1;x;R))  \mwedge{}  (\muparrow{}bag-maximal?(b2;x;R)))
Date html generated:
2016_10_25-AM-10_24_33
Last ObjectModification:
2016_07_12-AM-06_41_10
Theory : bags
Home
Index