Nuprl Lemma : bag-separate_wf
∀[A,B:Type]. ∀[bs:bag(A + B)].  (bag-separate(bs) ∈ bag(A) × bag(B))
Proof
Definitions occuring in Statement : 
bag-separate: bag-separate(bs)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-separate: bag-separate(bs)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
prop: ℙ
, 
outl: outl(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
outr: outr(x)
, 
bnot: ¬bb
, 
btrue: tt
Lemmas referenced : 
bag-mapfilter_wf, 
isl_wf, 
assert_wf, 
top_wf, 
subtype_rel_union, 
bnot_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
hypothesis, 
lambdaFormation, 
applyEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
unionElimination, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A  +  B)].    (bag-separate(bs)  \mmember{}  bag(A)  \mtimes{}  bag(B))
Date html generated:
2016_05_15-PM-02_35_30
Last ObjectModification:
2015_12_27-AM-09_45_43
Theory : bags
Home
Index