Nuprl Lemma : bag-separate_wf

[A,B:Type]. ∀[bs:bag(A B)].  (bag-separate(bs) ∈ bag(A) × bag(B))


Proof




Definitions occuring in Statement :  bag-separate: bag-separate(bs) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-separate: bag-separate(bs) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a top: Top prop: outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False outr: outr(x) bnot: ¬bb btrue: tt
Lemmas referenced :  bag-mapfilter_wf isl_wf assert_wf top_wf subtype_rel_union bnot_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache dependent_functionElimination lambdaEquality hypothesis lambdaFormation applyEquality independent_isectElimination isect_memberEquality voidElimination voidEquality setElimination rename unionElimination setEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A  +  B)].    (bag-separate(bs)  \mmember{}  bag(A)  \mtimes{}  bag(B))



Date html generated: 2016_05_15-PM-02_35_30
Last ObjectModification: 2015_12_27-AM-09_45_43

Theory : bags


Home Index