Nuprl Lemma : bag-size-bound
∀[T:Type]. ∀[as,bs:bag(T)]. ∀[n:ℕ].  #(as + bs) - n < #(bs) supposing #(as) < n
Proof
Definitions occuring in Statement : 
bag-size: #(bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
Lemmas referenced : 
bag_wf, 
bag-append_wf, 
member-less_than, 
nat_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
bag-size_wf, 
subtract_wf, 
decidable__lt, 
nat_properties, 
bag-size-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
applyEquality, 
because_Cache, 
unionElimination, 
imageElimination, 
productElimination, 
lambdaEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].  \mforall{}[n:\mBbbN{}].    \#(as  +  bs)  -  n  <  \#(bs)  supposing  \#(as)  <  n
Date html generated:
2016_05_15-PM-02_25_12
Last ObjectModification:
2016_01_16-AM-08_57_03
Theory : bags
Home
Index