Nuprl Lemma : concat-lifting-0_wf
∀[B:Type]. ∀[f:bag(B)].  (concat-lifting-0(f) ∈ bag(B))
Proof
Definitions occuring in Statement : 
concat-lifting-0: concat-lifting-0(f), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
concat-lifting-0: concat-lifting-0(f), 
select: L[n], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
funtype: funtype(n;A;T), 
concat-lifting: concat-lifting(n;f;bags), 
concat-lifting-list: concat-lifting-list(n;bags), 
bag-union: bag-union(bbs), 
concat: concat(ll), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
btrue: tt, 
single-bag: {x}, 
cons: [a / b], 
append: as @ bs
Lemmas referenced : 
bag_wf, 
primrec0_lemma, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
le_wf, 
false_wf, 
concat-lifting_wf, 
base_wf, 
stuck-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
computeAll, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[B:Type].  \mforall{}[f:bag(B)].    (concat-lifting-0(f)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-03_07_39
Last ObjectModification:
2016_01_16-AM-08_34_30
Theory : bags
Home
Index