Nuprl Lemma : lifting-0_wf
∀[B:Type]. ∀[b:B].  (lifting-0(b) ∈ bag(B))
Proof
Definitions occuring in Statement : 
lifting-0: lifting-0(b)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lifting-0: lifting-0(b)
, 
select: L[n]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
funtype: funtype(n;A;T)
, 
primrec: primrec(n;b;c)
, 
lifting-gen-rev: lifting-gen-rev(n;f;bags)
, 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
single-bag: {x}
, 
cons: [a / b]
Lemmas referenced : 
subtype_rel_self, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
le_wf, 
false_wf, 
lifting-gen-rev_wf, 
base_wf, 
stuck-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
computeAll, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[B:Type].  \mforall{}[b:B].    (lifting-0(b)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-03_01_15
Last ObjectModification:
2016_01_16-AM-08_36_27
Theory : bags
Home
Index