Nuprl Lemma : bag-size-as-summation

T:Type. ∀bs:bag(T).  (#(bs) = Σ(x∈bs). 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-size: #(bs) bag: bag(T) all: x:A. B[x] lambda: λx.A[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B nat: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  equal_wf squash_wf true_wf bag-size_wf nat_wf bag-summation-constant-int iff_weakening_equal decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache intEquality cumulativity setElimination rename sqequalRule natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}T:Type.  \mforall{}bs:bag(T).    (\#(bs)  =  \mSigma{}(x\mmember{}bs).  1)



Date html generated: 2018_05_21-PM-09_48_53
Last ObjectModification: 2017_07_26-PM-06_30_51

Theory : bags_2


Home Index