Nuprl Lemma : bag-size-as-summation
∀T:Type. ∀bs:bag(T).  (#(bs) = Σ(x∈bs). 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag-size_wf, 
nat_wf, 
bag-summation-constant-int, 
iff_weakening_equal, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
intEquality, 
cumulativity, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}T:Type.  \mforall{}bs:bag(T).    (\#(bs)  =  \mSigma{}(x\mmember{}bs).  1)
Date html generated:
2018_05_21-PM-09_48_53
Last ObjectModification:
2017_07_26-PM-06_30_51
Theory : bags_2
Home
Index