Nuprl Lemma : bag-summation-constant-int
∀[T:Type]. ∀[a:ℤ]. ∀[bs:bag(T)]. (Σ(x∈bs). a = (#(bs) * a) ∈ ℤ)
Proof
Definitions occuring in Statement :
bag-summation: Σ(x∈b). f[x]
,
bag-size: #(bs)
,
bag: bag(T)
,
uall: ∀[x:A]. B[x]
,
lambda: λx.A[x]
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
integ_dom: IntegDom{i}
,
crng: CRng
,
all: ∀x:A. B[x]
,
int_ring: ℤ-rng
,
rng_car: |r|
,
pi1: fst(t)
,
prop: ℙ
,
squash: ↓T
,
rng: Rng
,
nat: ℕ
,
true: True
,
and: P ∧ Q
,
uimplies: b supposing a
,
cand: A c∧ B
,
rng_plus: +r
,
pi2: snd(t)
,
rng_zero: 0
,
so_lambda: λ2x.t[x]
,
assoc: Assoc(T;op)
,
infix_ap: x f y
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
comm: Comm(T;op)
,
so_apply: x[s]
Lemmas referenced :
bag-summation-constant,
int_ring_wf,
integ_dom_wf,
bag_wf,
equal_wf,
squash_wf,
true_wf,
rng_car_wf,
rng_nat_op-int,
bag-size_wf,
nat_wf,
bag-summation_wf,
assoc_wf,
comm_wf,
rng_zero_wf,
decidable__equal_int,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
lambdaEquality,
setElimination,
rename,
sqequalRule,
dependent_functionElimination,
cumulativity,
isect_memberEquality,
axiomEquality,
because_Cache,
intEquality,
universeEquality,
hyp_replacement,
equalitySymmetry,
imageElimination,
equalityTransitivity,
multiplyEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_isectElimination,
independent_pairFormation,
productEquality,
functionExtensionality,
functionEquality,
addEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
voidElimination,
voidEquality,
computeAll
Latex:
\mforall{}[T:Type]. \mforall{}[a:\mBbbZ{}]. \mforall{}[bs:bag(T)]. (\mSigma{}(x\mmember{}bs). a = (\#(bs) * a))
Date html generated:
2016_10_25-AM-11_27_53
Last ObjectModification:
2016_07_12-AM-07_34_37
Theory : bags_2
Home
Index