Nuprl Lemma : bag-summation-constant-int

[T:Type]. ∀[a:ℤ]. ∀[bs:bag(T)].  (x∈bs). (#(bs) a) ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-size: #(bs) bag: bag(T) uall: [x:A]. B[x] lambda: λx.A[x] multiply: m add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B integ_dom: IntegDom{i} crng: CRng all: x:A. B[x] int_ring: -rng rng_car: |r| pi1: fst(t) prop: squash: T rng: Rng nat: true: True and: P ∧ Q uimplies: supposing a cand: c∧ B rng_plus: +r pi2: snd(t) rng_zero: 0 so_lambda: λ2x.t[x] assoc: Assoc(T;op) infix_ap: y decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top comm: Comm(T;op) so_apply: x[s]
Lemmas referenced :  bag-summation-constant int_ring_wf integ_dom_wf bag_wf equal_wf squash_wf true_wf rng_car_wf rng_nat_op-int bag-size_wf nat_wf bag-summation_wf assoc_wf comm_wf rng_zero_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule dependent_functionElimination cumulativity isect_memberEquality axiomEquality because_Cache intEquality universeEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity multiplyEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_isectElimination independent_pairFormation productEquality functionExtensionality functionEquality addEquality unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[a:\mBbbZ{}].  \mforall{}[bs:bag(T)].    (\mSigma{}(x\mmember{}bs).  a  =  (\#(bs)  *  a))



Date html generated: 2016_10_25-AM-11_27_53
Last ObjectModification: 2016_07_12-AM-07_34_37

Theory : bags_2


Home Index