Nuprl Lemma : bag-summation-constant
∀[T:Type]. ∀[r:Rng]. ∀[b:bag(T)].  ∀a:|r|. (Σ(x∈b). a = (#(b) ⋅r a) ∈ |r|)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_nat_op: n ⋅r e
, 
rng: Rng
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-size: #(bs)
, 
rng_nat_op: n ⋅r e
, 
bag-summation: Σ(x∈b). f[x]
, 
mon_nat_op: n ⋅ e
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
add_grp_of_rng: r↓+gp
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_id: e
, 
nat_op: n x(op;id) e
, 
prop: ℙ
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
infix_ap: x f y
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
bag_to_squash_list, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_zero_wf, 
itop_wf, 
rng_plus_wf, 
length_wf, 
int_seg_wf, 
iff_weakening_equal, 
bag-summation_wf, 
rng_all_properties, 
rng_plus_comm2, 
rng_nat_op_wf, 
bag-size_wf, 
bag_wf, 
rng_wf, 
rng_plus_comm, 
rng_plus_zero, 
list_induction, 
all_wf, 
list_accum_wf, 
top_wf, 
subtype_rel_list, 
list_wf, 
list_accum_nil_lemma, 
length_of_nil_lemma, 
list_accum_cons_lemma, 
length_of_cons_lemma, 
add-subtract-cancel, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
infix_ap_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
rng_plus_assoc, 
rng_plus_ac_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
setElimination, 
dependent_functionElimination, 
natural_numberEquality, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].    \mforall{}a:|r|.  (\mSigma{}(x\mmember{}b).  a  =  (\#(b)  \mcdot{}r  a))
Date html generated:
2017_10_01-AM-08_50_56
Last ObjectModification:
2017_07_26-PM-04_33_01
Theory : bags
Home
Index