Nuprl Lemma : bag-summation-constant

[T:Type]. ∀[r:Rng]. ∀[b:bag(T)].  ∀a:|r|. (x∈b). (#(b) ⋅a) ∈ |r|)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-size: #(bs) bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T rng_nat_op: n ⋅e rng: Rng rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] squash: T exists: x:A. B[x] bag-size: #(bs) rng_nat_op: n ⋅e bag-summation: Σ(x∈b). f[x] mon_nat_op: n ⋅ e bag-accum: bag-accum(v,x.f[v; x];init;bs) add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e nat_op: x(op;id) e prop: rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cand: c∧ B infix_ap: y top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j subtract: m ifthenelse: if then else fi  bfalse: ff bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  bag_to_squash_list equal_wf squash_wf true_wf rng_car_wf rng_zero_wf itop_wf rng_plus_wf length_wf int_seg_wf iff_weakening_equal bag-summation_wf rng_all_properties rng_plus_comm2 rng_nat_op_wf bag-size_wf bag_wf rng_wf rng_plus_comm rng_plus_zero list_induction all_wf list_accum_wf top_wf subtype_rel_list list_wf list_accum_nil_lemma length_of_nil_lemma list_accum_cons_lemma length_of_cons_lemma add-subtract-cancel lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int infix_ap_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf rng_plus_assoc rng_plus_ac_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename sqequalRule applyEquality lambdaEquality equalityTransitivity equalitySymmetry because_Cache setElimination dependent_functionElimination natural_numberEquality cumulativity imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination hyp_replacement applyLambdaEquality independent_pairFormation axiomEquality isect_memberEquality voidElimination voidEquality addEquality unionElimination equalityElimination dependent_pairFormation instantiate int_eqEquality intEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].    \mforall{}a:|r|.  (\mSigma{}(x\mmember{}b).  a  =  (\#(b)  \mcdot{}r  a))



Date html generated: 2017_10_01-AM-08_50_56
Last ObjectModification: 2017_07_26-PM-04_33_01

Theory : bags


Home Index