Nuprl Lemma : bag-subtract_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs,as:bag(T)].  (bag-subtract(eq;bs;as) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-subtract: bag-subtract(eq;bs;as) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-subtract: bag-subtract(eq;bs;as) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  bag-accum_wf bag_wf bag-drop_wf equal_wf squash_wf true_wf bag-drop-commutes iff_weakening_equal deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality independent_isectElimination lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs,as:bag(T)].    (bag-subtract(eq;bs;as)  \mmember{}  bag(T))



Date html generated: 2018_05_21-PM-09_49_22
Last ObjectModification: 2017_07_26-PM-06_31_01

Theory : bags_2


Home Index