Nuprl Lemma : iflift_1

[A,B:Type]. ∀[c:𝔹]. ∀[f:A ⟶ B]. ∀[x,y:A].  (f[if then else fi if then f[x] else f[y] fi  ∈ B)


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  so_apply: x[s] bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule applyEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination inhabitedIsType isect_memberEquality axiomEquality universeIsType functionIsType functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[c:\mBbbB{}].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x,y:A].
    (f[if  c  then  x  else  y  fi  ]  =  if  c  then  f[x]  else  f[y]  fi  )



Date html generated: 2019_10_15-AM-10_46_34
Last ObjectModification: 2018_09_27-AM-09_41_13

Theory : basic


Home Index