Nuprl Lemma : iflift_1
∀[A,B:Type]. ∀[c:𝔹]. ∀[f:A ⟶ B]. ∀[x,y:A].  (f[if c then x else y fi ] = if c then f[x] else f[y] fi  ∈ B)
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
so_apply: x[s], 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
inhabitedIsType, 
isect_memberEquality, 
axiomEquality, 
universeIsType, 
functionIsType, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[c:\mBbbB{}].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x,y:A].
    (f[if  c  then  x  else  y  fi  ]  =  if  c  then  f[x]  else  f[y]  fi  )
Date html generated:
2019_10_15-AM-10_46_34
Last ObjectModification:
2018_09_27-AM-09_41_13
Theory : basic
Home
Index