Nuprl Lemma : weak-continuity_wf

[T,V:Type].  (weak-continuity(T;V) ∈ ℙ)


Proof




Definitions occuring in Statement :  weak-continuity: weak-continuity(T;V) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weak-continuity: weak-continuity(T;V) so_lambda: λ2x.t[x] implies:  Q prop: nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf int_seg_wf equal_wf int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache natural_numberEquality setElimination rename applyEquality functionExtensionality independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality

Latex:
\mforall{}[T,V:Type].    (weak-continuity(T;V)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_29_10
Last ObjectModification: 2017_07_26-PM-04_23_50

Theory : basic


Home Index