Nuprl Lemma : decidable__node_complete
∀n:node. ((∀x,y:Prop.  Dec(x = y ∈ Prop)) 
⇒ Dec(node_complete{i:l}(n)))
Proof
Definitions occuring in Statement : 
node_complete: node_complete{i:l}(n)
, 
node: node
, 
dl-prop: Prop
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
node_complete: node_complete{i:l}(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
node: node
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
decidable__cand, 
l_all_wf2, 
dl-prop_wf, 
pi1_wf_top, 
list_wf, 
istype-void, 
dl-localT_wf, 
dl-prop-obj_wf, 
l_member_wf, 
dl-localF_wf, 
decidable__l_all-better-extract, 
decidable__l_member, 
decidable_wf, 
equal_wf, 
node_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
setIsType, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination, 
functionIsType
Latex:
\mforall{}n:node.  ((\mforall{}x,y:Prop.    Dec(x  =  y))  {}\mRightarrow{}  Dec(node\_complete\{i:l\}(n)))
Date html generated:
2020_05_20-AM-09_02_07
Last ObjectModification:
2019_11_27-PM-02_29_42
Theory : dynamic!logic
Home
Index