Nuprl Lemma : dl-prog-sem_functionality

alpha:Prog
  ∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P,P':ℕ ⟶ K ⟶ ℙ].
    ((∀n∈dl-prop-atoms() prog(alpha).∀k:K. (P[n] ⇐⇒ P'[n] k))  (∀k,k':K.  ([|alpha|] k' ⇐⇒ [|alpha|] k')))


Proof




Definitions occuring in Statement :  dl-prop-atoms: dl-prop-atoms() dl-prog-sem: [|alpha|] dl-prog-obj: prog(x) dl-prog: Prog l_all: (∀x∈L.P[x]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] nat: ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q dl-prog-sem: [|alpha|] dl-same-sem: dl-same-sem(x;K;r;s) dl-kind: dl-kind(d) mobj-kind: mobj-kind(x) pi1: fst(t) dl-prog-obj: prog(x)
Lemmas referenced :  dl-sem_functionality1 dl-prog-obj_wf dl-prog_wf l_all_wf nat_wf dl-prop-atoms_wf iff_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat l_member_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis universeIsType isect_memberFormation_alt isectElimination independent_functionElimination applyEquality sqequalRule lambdaEquality_alt functionEquality dependent_set_memberEquality_alt setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation because_Cache setIsType inhabitedIsType functionIsType universeEquality instantiate productElimination tokenEquality

Latex:
\mforall{}alpha:Prog
    \mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P,P':\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}n\mmember{}dl-prop-atoms()  prog(alpha).\mforall{}k:K.  (P[n]  k  \mLeftarrow{}{}\mRightarrow{}  P'[n]  k))
        {}\mRightarrow{}  (\mforall{}k,k':K.    ([|alpha|]  k  k'  \mLeftarrow{}{}\mRightarrow{}  [|alpha|]  k  k')))



Date html generated: 2019_10_15-AM-11_44_03
Last ObjectModification: 2019_03_26-AM-11_55_52

Theory : dynamic!logic


Home Index