Nuprl Lemma : dl-prog-sem_functionality
∀alpha:Prog
  ∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P,P':ℕ ⟶ K ⟶ ℙ].
    ((∀n∈dl-prop-atoms() prog(alpha).∀k:K. (P[n] k 
⇐⇒ P'[n] k)) 
⇒ (∀k,k':K.  ([|alpha|] k k' 
⇐⇒ [|alpha|] k k')))
Proof
Definitions occuring in Statement : 
dl-prop-atoms: dl-prop-atoms()
, 
dl-prog-sem: [|alpha|]
, 
dl-prog-obj: prog(x)
, 
dl-prog: Prog
, 
l_all: (∀x∈L.P[x])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
dl-prog-sem: [|alpha|]
, 
dl-same-sem: dl-same-sem(x;K;r;s)
, 
dl-kind: dl-kind(d)
, 
mobj-kind: mobj-kind(x)
, 
pi1: fst(t)
, 
dl-prog-obj: prog(x)
Lemmas referenced : 
dl-sem_functionality1, 
dl-prog-obj_wf, 
dl-prog_wf, 
l_all_wf, 
nat_wf, 
dl-prop-atoms_wf, 
iff_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
l_member_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
isect_memberFormation_alt, 
isectElimination, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
because_Cache, 
setIsType, 
inhabitedIsType, 
functionIsType, 
universeEquality, 
instantiate, 
productElimination, 
tokenEquality
Latex:
\mforall{}alpha:Prog
    \mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P,P':\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}n\mmember{}dl-prop-atoms()  prog(alpha).\mforall{}k:K.  (P[n]  k  \mLeftarrow{}{}\mRightarrow{}  P'[n]  k))
        {}\mRightarrow{}  (\mforall{}k,k':K.    ([|alpha|]  k  k'  \mLeftarrow{}{}\mRightarrow{}  [|alpha|]  k  k')))
Date html generated:
2019_10_15-AM-11_44_03
Last ObjectModification:
2019_03_26-AM-11_55_52
Theory : dynamic!logic
Home
Index