Nuprl Lemma : atom-product-disjoint

[T,S:Type].  Atom ⋂ T × S)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A product: x:A × B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B uimplies: supposing a bfalse: ff sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  isect2_decomp pair-eta subtype_base_sq bool_subtype_base bfalse_wf btrue_neq_bfalse isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename lemma_by_obid sqequalHypSubstitution isectElimination atomEquality productEquality hypothesisEquality productElimination equalityTransitivity hypothesis equalitySymmetry independent_pairFormation isatomReduceTrue because_Cache instantiate independent_isectElimination sqequalRule dependent_functionElimination independent_functionElimination voidElimination lambdaEquality universeEquality isect_memberEquality

Latex:
\mforall{}[T,S:Type].    (\mneg{}Atom  \mcap{}  T  \mtimes{}  S)



Date html generated: 2016_05_15-PM-10_07_57
Last ObjectModification: 2015_12_27-PM-06_00_39

Theory : eval!all


Home Index