Nuprl Lemma : int-product-disjoint
∀[T,S:Type].  (¬ℤ ⋂ T × S)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
bfalse: ff
, 
sq_type: SQType(T)
Lemmas referenced : 
isect2_decomp, 
pair-eta, 
isect2_subtype_rel3, 
top_wf, 
subtype_rel_product, 
subtype_rel_wf, 
isint-int, 
subtype_base_sq, 
bool_subtype_base, 
bfalse_wf, 
btrue_neq_bfalse, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
productEquality, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_pairFormation, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[T,S:Type].    (\mneg{}\mBbbZ{}  \mcap{}  T  \mtimes{}  S)
Date html generated:
2016_05_15-PM-10_07_59
Last ObjectModification:
2015_12_27-PM-06_01_04
Theory : eval!all
Home
Index