Nuprl Lemma : int-product-disjoint

[T,S:Type].  (¬ℤ ⋂ T × S)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A product: x:A × B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a guard: {T} or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top all: x:A. B[x] bfalse: ff sq_type: SQType(T)
Lemmas referenced :  isect2_decomp pair-eta isect2_subtype_rel3 top_wf subtype_rel_product subtype_rel_wf isint-int subtype_base_sq bool_subtype_base bfalse_wf btrue_neq_bfalse isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename lemma_by_obid sqequalHypSubstitution isectElimination intEquality productEquality hypothesisEquality productElimination equalityTransitivity hypothesis equalitySymmetry independent_pairFormation applyEquality because_Cache independent_isectElimination sqequalRule inrFormation lambdaEquality isect_memberEquality voidElimination voidEquality instantiate dependent_functionElimination independent_functionElimination universeEquality

Latex:
\mforall{}[T,S:Type].    (\mneg{}\mBbbZ{}  \mcap{}  T  \mtimes{}  S)



Date html generated: 2016_05_15-PM-10_07_59
Last ObjectModification: 2015_12_27-PM-06_01_04

Theory : eval!all


Home Index