Nuprl Lemma : product-union-atom-disjoint

[T,S,A,B:Type].  T × S ⋂ (A B) ⋃ Atom)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 b-union: A ⋃ B uall: [x:A]. B[x] not: ¬A product: x:A × B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top all: x:A. B[x] assert: b ifthenelse: if then else fi  btrue: tt true: True b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit pi2: snd(t) bfalse: ff prop: has-value: (a)↓
Lemmas referenced :  isect2_decomp b-union_wf pair-eta isect2_subtype_rel3 top_wf subtype_rel_product subtype_rel_wf isatom-implies-not-ispair atom_subtype_base value-type-has-value atom-value-type assert_wf bfalse_wf has-value_wf_base is-exception_wf btrue_wf equal_wf isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename extract_by_obid sqequalHypSubstitution isectElimination productEquality cumulativity hypothesisEquality unionEquality atomEquality hypothesis productElimination equalityTransitivity equalitySymmetry independent_pairFormation sqequalRule applyEquality because_Cache independent_isectElimination inlFormation lambdaEquality isect_memberEquality voidElimination voidEquality natural_numberEquality imageElimination unionElimination equalityElimination isatomReduceTrue independent_functionElimination ispairCases divergentSqle instantiate baseClosed sqequalAxiom dependent_functionElimination universeEquality

Latex:
\mforall{}[T,S,A,B:Type].    (\mneg{}T  \mtimes{}  S  \mcap{}  (A  +  B)  \mcup{}  Atom)



Date html generated: 2018_05_21-PM-10_19_11
Last ObjectModification: 2017_07_26-PM-06_36_52

Theory : eval!all


Home Index