Nuprl Lemma : fpf-restrict-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ⟶ 𝔹]. ∀[x:A].
  uiff(↑x ∈ dom(fpf-restrict(f;P));{(↑x ∈ dom(f)) ∧ (↑(P x))})


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a implies:  Q guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q top: Top
Lemmas referenced :  assert_witness fpf-dom_wf assert_wf fpf-restrict_wf2 top_wf bool_wf fpf_wf deq_wf domain_fpf_restrict_lemma and_wf l_member_wf fpf-domain_wf subtype-fpf2 member_filter filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf iff_wf member-fpf-domain
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis independent_pairFormation productElimination independent_functionElimination sqequalRule independent_pairEquality lemma_by_obid isectElimination applyEquality because_Cache lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality lambdaFormation voidElimination voidEquality independent_isectElimination addLevel impliesFunctionality setEquality setElimination rename andLevelFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    uiff(\muparrow{}x  \mmember{}  dom(fpf-restrict(f;P));\{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x))\})



Date html generated: 2018_05_21-PM-09_31_20
Last ObjectModification: 2018_02_09-AM-10_25_45

Theory : finite!partial!functions


Home Index