Nuprl Lemma : member-fpf-dom
∀[A:Type]. ∀eq:EqDecider(A). ∀f:a:A fp-> Top. ∀x:A. (↑x ∈ dom(f)
⇐⇒ (x ∈ fst(f)))
Proof
Definitions occuring in Statement :
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
l_member: (x ∈ l)
,
deq: EqDecider(T)
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
top: Top
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
fpf-dom: x ∈ dom(f)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
fpf: a:A fp-> B[a]
,
top: Top
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
l_member_wf,
pi1_wf_top,
list_wf,
assert-deq-member,
assert_wf,
deq-member_wf,
iff_wf,
fpf_wf,
top_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
independent_pairFormation,
hypothesis,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
productElimination,
independent_pairEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
addLevel,
independent_functionElimination,
dependent_functionElimination,
sqequalRule,
lambdaEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}eq:EqDecider(A). \mforall{}f:a:A fp-> Top. \mforall{}x:A. (\muparrow{}x \mmember{} dom(f) \mLeftarrow{}{}\mRightarrow{} (x \mmember{} fst(f)))
Date html generated:
2019_10_16-AM-11_26_28
Last ObjectModification:
2018_08_25-PM-00_07_22
Theory : finite!partial!functions
Home
Index