Nuprl Lemma : member-fpf-dom
∀[A:Type]. ∀eq:EqDecider(A). ∀f:a:A fp-> Top. ∀x:A.  (↑x ∈ dom(f) ⇐⇒ (x ∈ fst(f)))
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
l_member: (x ∈ l), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
top: Top, 
pi1: fst(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
fpf-dom: x ∈ dom(f), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
fpf: a:A fp-> B[a], 
top: Top, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
l_member_wf, 
pi1_wf_top, 
list_wf, 
assert-deq-member, 
assert_wf, 
deq-member_wf, 
iff_wf, 
fpf_wf, 
top_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
addLevel, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}f:a:A  fp->  Top.  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(f)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fst(f)))
Date html generated:
2019_10_16-AM-11_26_28
Last ObjectModification:
2018_08_25-PM-00_07_22
Theory : finite!partial!functions
Home
Index