Nuprl Lemma : free-append-0
∀[X:Type]. ∀[w:free-word(X)]. (w + 0 = w ∈ free-word(X))
Proof
Definitions occuring in Statement :
free-0: 0
,
free-append: w + w'
,
free-word: free-word(X)
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
free-word: free-word(X)
,
all: ∀x:A. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
cand: A c∧ B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
free-0: 0
,
free-append: w + w'
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
refl: Refl(T;x,y.E[x; y])
Lemmas referenced :
list_wf,
word-equiv_wf,
word-equiv-equiv,
quotient-member-eq,
append_wf,
nil_wf,
append_back_nil,
equal-wf-base,
equal_wf,
squash_wf,
true_wf,
free-word_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
extract_by_obid,
isectElimination,
thin,
unionEquality,
cumulativity,
hypothesisEquality,
hypothesis,
promote_hyp,
lambdaFormation,
equalityTransitivity,
equalitySymmetry,
because_Cache,
independent_pairFormation,
sqequalRule,
lambdaEquality,
independent_isectElimination,
dependent_functionElimination,
independent_functionElimination,
pointwiseFunctionality,
pertypeElimination,
productElimination,
productEquality,
applyEquality,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[X:Type]. \mforall{}[w:free-word(X)]. (w + 0 = w)
Date html generated:
2020_05_20-AM-08_22_24
Last ObjectModification:
2017_07_28-AM-09_18_41
Theory : free!groups
Home
Index