Nuprl Lemma : all-large-and
∀[P,Q:ℕ ⟶ ℙ]. (∀large(n).P[n]
⇒ ∀large(n).Q[n]
⇒ ∀large(n).P[n] ∧ Q[n])
Proof
Definitions occuring in Statement :
all-large: ∀large(n).P[n]
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all-large: ∀large(n).P[n]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
nat: ℕ
,
all: ∀x:A. B[x]
,
guard: {T}
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
cand: A c∧ B
,
uiff: uiff(P;Q)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
Lemmas referenced :
imax_wf,
imax_nat,
nat_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
equal_wf,
le_wf,
imax_lb,
all_wf,
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation,
dependent_set_memberEquality,
cut,
introduction,
extract_by_obid,
isectElimination,
setElimination,
rename,
hypothesisEquality,
hypothesis,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
independent_isectElimination,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
because_Cache,
functionEquality,
productEquality,
applyEquality,
functionExtensionality,
universeEquality,
cumulativity
Latex:
\mforall{}[P,Q:\mBbbN{} {}\mrightarrow{} \mBbbP{}]. (\mforall{}large(n).P[n] {}\mRightarrow{} \mforall{}large(n).Q[n] {}\mRightarrow{} \mforall{}large(n).P[n] \mwedge{} Q[n])
Date html generated:
2018_05_21-PM-07_59_41
Last ObjectModification:
2017_07_26-PM-05_36_32
Theory : general
Home
Index