Nuprl Lemma : all-large-and

[P,Q:ℕ ⟶ ℙ].  (∀large(n).P[n]  ∀large(n).Q[n]  ∀large(n).P[n] ∧ Q[n])


Proof




Definitions occuring in Statement :  all-large: large(n).P[n] nat: uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all-large: large(n).P[n] uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T nat: all: x:A. B[x] guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q prop: cand: c∧ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  imax_wf imax_nat nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf imax_lb all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation dependent_set_memberEquality cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache functionEquality productEquality applyEquality functionExtensionality universeEquality cumulativity

Latex:
\mforall{}[P,Q:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}large(n).P[n]  {}\mRightarrow{}  \mforall{}large(n).Q[n]  {}\mRightarrow{}  \mforall{}large(n).P[n]  \mwedge{}  Q[n])



Date html generated: 2018_05_21-PM-07_59_41
Last ObjectModification: 2017_07_26-PM-05_36_32

Theory : general


Home Index