Nuprl Lemma : all-large-and
∀[P,Q:ℕ ⟶ ℙ].  (∀large(n).P[n] 
⇒ ∀large(n).Q[n] 
⇒ ∀large(n).P[n] ∧ Q[n])
Proof
Definitions occuring in Statement : 
all-large: ∀large(n).P[n]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all-large: ∀large(n).P[n]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
imax_wf, 
imax_nat, 
nat_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
imax_lb, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
dependent_set_memberEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
cumulativity
Latex:
\mforall{}[P,Q:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}large(n).P[n]  {}\mRightarrow{}  \mforall{}large(n).Q[n]  {}\mRightarrow{}  \mforall{}large(n).P[n]  \mwedge{}  Q[n])
Date html generated:
2018_05_21-PM-07_59_41
Last ObjectModification:
2017_07_26-PM-05_36_32
Theory : general
Home
Index